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Unsteady flow at a stagnation point 
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The flow at an axisymmetric stagnation point is considered when the outer, inviscid 
flow is oscillatory with zero mean. It is shown that following the commencement of the 
flow at an initial instant there is a breakdown of the solution, after a finite time, as fluid 
erupts from the boundary at the stagnation point. This is interpreted as the origin of 
the jet-like flow observed in the experiments of Amin & Riley (1990). It is demonstrated 
that an in-plane, torsional motion of the boundary, either steady or oscillatory, can 
suppress the singular behaviour. 

1. Introduction 
The present work has been motivated by a previous investigation carried out by 

Amin & Riley (1990), in which the steady streaming from a sphere due to a pulsating 
source was analysed. A limiting case of this is when the source retreats to infinity, but 
its strength becomes unbounded. The analogue of that case is when the sphere 
performs unidirectional oscillations in a fluid otherwise at rest. In a simple experiment, 
Amin & Riley were able to demonstrate one of the main features of the flow, namely 
the appearance of a quasi-steady jet-like flow along the axis of oscillation. This they 
visualized by introducing dye into the fluid. Their figure 7, reproduced here as figure 
1, clearly shows the phenomenon. In the experiment the sphere was coated with dye 
before being set into motion. The dye was seen to move towards the stagnation points 
before erupting from the surface to form the jets shown in figure 1. 

In this paper we analyse the eruption phenomenon, and argue that a torsional 
motion of the sphere can prevent it. Of course, if a sphere performs only a steady 
rotation about an axis then a different type of jet emerges from it, namely an equatorial 
jet in a plane perpendicular to the axis of rotation, as observed by Bowden & Lord 
(1963). For such a motion, started from rest, the jet formation is by an eruption from 
the equator, as has been examined by Banks & Zaturska (1979). Such eruptions 
manifest themselves as singularities, at a finite time, in the solution of the governing 
equations which is localized to the point or line on which the eruption takes place; 
these are often conceived as boundary-layer collisions. In the present investigation we 
examine the phenomenon described above by studying the unsteady flow in the 
neighbourhood of the stagnation point when the outer inviscid flow performs 
harmonic oscillations with zero mean. Our approach is similar to that adopted by Riley 
& Vasantha (1989), who examined such a flow at a two-dimensional stagnation point. 
For arbitrary values of a suitably defined frequency parameter a direct integration of 
the governing equations, following the initiation of the motion, leads to an estimate of 
the breakdown time. This is refined by a knowledge of the structure of the singularity 
associated with the breakdown. For the two-dimensional case, Riley & Vasantha 
showed that the singularity was that of Banks & Zaturska, associated with the notion 
of the boundary layers colliding along a line. The present situation is different in the 
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FIGURE 1 .  A visualization of the jets issuing from the sphere, along the oscillation axis, in the 
experiment of Amin & Riley (1990). 

sense that the boundary layer is converging onto a point, rather than a line, in the 
eruptive process. And in this case the singular behaviour is basically that described by 
Brown & Simpson (1982) for the eruption of a free-convective plume from the upper 
pole of an impulsively heated sphere. The calculations are supplemented by an analysis 
appropriate to large and small values of the frequency parameter. In particular the 
high-frequency case (which actually corresponds to small values of the frequency 
parameter) clearly demonstrates the basic features of the flow in question, in the sense 
that the time-averaged flow is seen to lead to a radial inflow towards the stagnation 
point, from which fluid must obviously then be ejected from the boundary. The 
singular behaviour that we report here may be contrasted with that at a rear stagnation 
point for impulsive steady flow. This has been considered, in the axisymmetric case, by 
Howarth (1973). In that situation there is no breakdown of the solution at a finite time, 
and the boundary layer thickens indefinitely. In a final section of the paper we show 
that a torsional movement of the boundary at the stagnation point can suppress the 
eruptive singular behaviour described above. This we do by considering two particular 
cases, namely that in which the boundary rotates steadily, and secondly the case where 
it performs torsional oscillations. It is the net radial motion outwards, which is induced 
by the torsional motion of the boundary, overcoming the radial inflow referred to 
above that suppresses the eruption and the flow assumes a quasi-steady state. 

2. Governing equations 
We take the origin at the stagnation point, ( r ,  6, z )  are cylindrical polar coordinates 

with (u, v, w) the corresponding velocity components: the boundary lies in the plane 
z = 0. With axial symmetry assumed the governing equations for unsteady flow are, in 
the boundary-layer limit, 
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a a 
ar a Z  
- (ru)+-(rw) = 0, (3) 

where t is time, v is the kinematic viscosity, and Ul is the radial component of velocity 
outside the boundary layer ; the corresponding azimuthal component is zero. We now 
suppose that outside the boundary layer the radial and axial components of velocity 
(U,, 4) are given by 

(4) 
with, as already mentioned, no azimuthal velocity. However, we do allow the 
possibility of azimuthal motion of the boundary, z = 0, itself, such that 

U, = r52, cos w1 t ,  W, = - 252, z cos w1 t ,  

u(r, 0, t )  = rsZ, $(7), where 7 = w1 t. (5) 
The quantities w,, 52, and 52, are all constants with dimension (time)-’. 

stagnation-point flow, and allowing for an azimuthal motion, we now write 
Following the classical reduction of the boundary-layer equations for axisymmetric 

u = r52, F’(7,7), v = r52, G(7, T ) ,  w = - 252, (6 a-c) 

where 7 = z and 7 = w 1 t ,  (;J (7) 

and we have used a prime to denote differentiation with respect to 7. With (3) satisfied 
identically, equations for F and G are derived by substituting (4), (6) and (7) into (1) 
and (2) to give 

(8) 
aF‘ - + A,(F” - 2FF”) - A, G2 = - sin 7 + A, cos2 7 + +F”, 
a7 

where A, = Ql/W1, A, = 52,/0,. (10) 

F(O,T) = F(0, 7) = 0, G(O,7) = q5(7), all 7, (1 1) 
F(co,7) =COST, G(co,7) = 0, all 7, (12) 

The boundary conditions for (8) and (9) are 

where q5 is, as yet, unspecified. For all the cases considered, we assume that the motion 
is started impulsively at 7 = 0, so that conditions (11) and (12) are supplemented by 

In the next section we concentrate on the situation in which there is no azimuthal 
motion, so that q5 = 0 for all 7, and we demonstrate how this unsteady stagnation-point 
flow breaks down in a finite time. In $4 we show how an azimuthal motion of the 
boundary can suppress this singular behaviour. 

F’(q,O+) = 1, G(r,O+) = 0, for all 7. (13) 

3. The case 4(7) = 0 
In relation to the problem studied by Amin & Riley (1990), this case may be 

interpreted as corresponding to the flow in the neighbourhood of the forward 
stagnation point on a sphere which is set into oscillatory motion at 7 = 0. 
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For convenience we now write (8) as the coupled equations 

aH 
- a7 + Al(H2 - 2FH’) = - sin 7 + A,  cos2 7 +@”, F = H, (14a, b) 

which are to be solved subject to conditions (1 lk(l3). The numerical integration of 
(14) is straightforward, and is carried out iteratively following a quasi-linearization of 
the quadratic term in H of equation (14~) .  The solution for His  advanced in time using 
a Crank-Nicolson method, whilst (14b) is solved for F using simple quadrature. Thus 
at each time step there is iteration between (144 and (14b) until convergence is achieved. 
As 7 + 0, H - erf {7/(27)f}, as a consequence of which we commence our numerical 
integration of (14) in variables (7,7) where 7 = q / d ,  reverting to variables (7,7) at 
7 = 1, when f j  = 7. The solution is advanced by increments 67 = 0.01, with a spatial 
mesh size 87 = 87 = 0.1. The outer boundary has been set at qm = T~ = 500. 

The solution of (14u, b) depends upon the single parameter A,, and in the range 
0.65 6 A, 6 6.5 for which we have carried out a numerical investigation, as described 
above, the solution breaks down at a finite time 7,. This breakdown manifests itself as 
an eruption of fluid from the boundary layer in which the axial velocity becomes 
unbounded, as does the maximum radial inflow to feed this eruption. The eruption has 
in common with others that have been studied, as detailed in $1, an inviscid nature. A 
balance of the first two terms of (14a) suggests that we may expect the maximum value 
of Ifl to vary as (7, - r)-l, and this is indeed consistent with our numerical results. The 
basic structure of the singularity implied by this result is identical with that considered 
by Brown & Simpson (1982) for the erupting flow at the upper pole of an impulsively 
heated sphere, and is not reproduced here, except to note that F varies as (7, - 7)-% as 
r + 7,, and the inviscid region in which the singularity is centred increases in thickness 
like (7,-7)-;. The inviscid region is flanked by regions in which viscous effects are 
important. For our purpose the important features of the singular structure are that, 
as 7+7, ,  

max IH N pl(7, -TI-’, (1 5 a) 

where p1 and pz are constants. The quantity 5 in (15b) is, from (6c) ,  seen to be a 
measure of the viscous displacement velocity. To determine the breakdown time r, we 
proceed as follows. With the outer edge of the boundary layer fixed at 7 = 7, we 
monitor the quantity laH/a?;ll at 7 = ym - 587. When this exceeds 0.1 the calculation 
is terminated to give an approximate value 7, of the breakdown time 7,. This may now 
be improved, by use of (15), as follows. We assume linear relationships among &;, 
(max \M)-l and 7, and then use successive pairs of points from 7 = 7,- 1067 to linearly 
extrapolate these quantities to zero. In this way we have a succession of estimates of 
78, converging to our final choice. The final estimates of 7, from each of (1 5a, b) agree 
to within less than 0.2 %, and we are confident that the results we show in figure 2, from 
the numerical solution of (14), are accurate to at least two decimal places. At this point 
we remark that the eruptive behaviour of the solution is independent of the manner in 
which the flow is initiated, impulsively for the results described above. For example, we 
have repeated the calculations with F’( a,7) = sin 7, (1 - e-3 sin 7, (1 - e-Ta) sin 7 

corresponding, respectively, to F - 7, r2, 73 as 7 --f 0. The same behaviour as described 
above is observed, with a delay in the onset of singular behaviour of approximately tn 
for the larger values of A,. 
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1 1  

FIGURE 2. The breakdown time 7, of the solution as a function of A,: ~ , from the numerical 
solution of equation (14); ----, from the asymptotic result (34) for A, < 1; -.-.- , from the 
asymptotic result (24) for A, $ 1. 

The results we have obtained in the manner described strongly suggest that as 
A, --f co, 7, + const., and as A, --t 0,7, + co ; we now investigate each of these possibilities 
in turn. 

(i) A, B 1 
With w1 < GI, we interpret this as a low-frequency situation in which the solution is, 

over an initial period of time, the quasi-steady stagnation-point flow. To acknowledge 
this formally we write 

where, from (8), F(Q satisfies 
F(q,7) = (cos 7)fA+F([), where y = (A ,  cos ~ ) : q ,  (16) 

+F”’ + 2 W  - F2 + 1 = O(sin 7/h, cos2 7), (17) 
with F(0) = al(0) = 0, Fyco)  = 1, (18) 
and a prime now denotes differentiation with respect to 6. We see from (17) and (18) 
that F([) is the classical, steady stagnation-point solution which will fail, as the right- 
hand side of (17) shows, as ~ + + n .  Specifically, this form of the solution will be 
inadequate when Aicos7 = O(1). In that case the time variation of F cannot be 
ignored, which leads to the introduction of new variables, with 

(19) 7 = Ln - A-- ,;T, c= A i q ,  F ( ~ , T )  = A&F(c T ) ,  
where, from (9, 9 satisfies 

a r  
i3T (20) -++F’”+”fl’’-9’2+T2-1 = 0, 
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with F(0, T )  = F’(0, T )  = 0, ~ ’ ( ( C O ,  T )  = T, (21) 
and a prime in (17), (18) denotes differentiation with respect to In order to solve (20) 
subject to (21) we need a further condition, which expresses the fact that the solution 
of (20) matches, as T+ co, the quasi-steady stagnation-point solution 99. To allow 
this we write 

and g satisfies, denoting differentiation with respect to [ by a prime, 
F(c  T )  = (T/T,Fg(a, where [ = (T/T,);c (22) 

(23 4 
with g ( 0 )  = g’(0) = 0, ~ ’ ( C O )  = T,. (23 b) 

ig’f‘ + 2 9 g f f  - g ’ 2  + T: = 0, 

In deriving (23) we have neglected terms O ( T i / T 2 ,  T,/T, T,/T2), when T is large, 
compared to terms O(T:). The solution of (23) is, of course, simply a scaled version of 
the classical stagnation-point flow, and we use it as a condition at T = T, to commence 
the integration of (20), (21), with T decreasing. We take T, = 10, and the strategy for 
integrating (20) that we have adopted mirrors that of $2, by splitting the equation into 
two as in (14). As with that equation a breakdown of the solution occurs at T = 
where T, = -2.01, so that we have, from (19), 

as A l + c o .  
2.01 

7, - ;n+- 
A! 

This result is included in figure 2, and shows remarkable agreement with the results we 
have already obtained by the methods of 52, for A, > 6. We now consider the other 
limiting case. 

(ii) A, < 1 
We seek a solution of (8) in this case by writing 

F(r,  7) = F,(% 7) + h,CFY’(r) +F:u’(r, 7)) + O(h3, 125) 
where we have adopted the superscript notation ‘s ’  to denote quantities independent 
of 7, and ‘u’ for quantities that are time-dependent. The reason for splitting the terms 
O(A,) in (25) in this manner will become apparent below. At O(1) we have, from 
(8)-(13), the solution 

where the real part of (26) is to be understood. We note that transients associated with 
the initial condition have been ignored; these decay as 7-g and are of no concern to us 
in what follows. At O(A,) interaction between the nonlinear terms yields a contribution 
that is independent of 7 so that FY) satisfies 

with 

It is well known, see for example Stuart (1963), that in these steady-streaming 
situations it is not possible to satisfy the condition FY)’(co) = 0 within the Stokes 
boundary layer of thickness O(v/w)i that we are working. The solution of (27) which 
has Fr)’ bounded as 7-f co is 

F f ) ( r )  = -re-’lsinr-~e-’l(5cosr+3 sinq)--Qe-27-:r++, (28) 
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so that F ( 7 ,  r )  - cos r -:Al + O(A:) as 7 + co. (29) 
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We see, from (29), that in order to match our solution with (4), it is necessary to 
introduce an outer boundary layer in which the adjustment is made. Furthermore (29) 
demonstrates, more clearly than we have seen previously, the origins of the eruptive 
failure of the solution of our governing equations. Thus, a time average of (29) shows 
that there is a net radial inflow to the stagnation point which inevitably leads to an 
eruption from it. To accommodate the time-independent element of the flow that has 
emerged at O(AJ we introduce variables appropriate to an outer region as 

F(7,7) = 7 cos r + f (7, T),  where 7 = A, 7, 5 = A: r. (30) 
In (30) the scaling of the spatial coordinate allows us to match the solution in the outer 
region with (29), and our choice of timescale is motivated as follows. From (6a)  and 
(25) we see that the time-averaged radial velocity has magnitude O(rS2;/wl) which 
suggests that an appropriate timescale on which the eruption will take place is wl/Q: 
or h;2~; ’  as implied by (30). 

If the variables (30) are introduced into (8), and the resulting equation is averaged 
on the scale of r, then f satisfies 

where a prime now denotes differentiation with respect to 7, together with 

f ( 0 , T )  = 0, f’(0,T) = -:, f’(co,?) = 0, ?> 0; (32) 

and f’(q,O+) = 0, V >  0. (33) 
We note that the condition (33) at T = 0 conceals an uncertainty in the origin of time, 
for this condition, on the scale of r. Our strategy for the solution of (31)-(33) is exactly 
that set out in 52, with the initial distribution off’ now given as 

~ ( 7 ,  5) = -:[I -erf{7/(2+}1. 

As anticipated the solution fails, in the eruptive manner that we have encountered 
earlier, at ?, = 1.524 so that 

as A,+O. 1.524 
7, - ~ 

4 (34) 

This result is also shown in figure 2 where it is seen to be consistent with our numerical 
solutions of (14). 

This concludes our discussion of the development of a singularity in the oscillatory 
flow at the stagnation point when the boundary is at rest. 

4. The case $(7) + 0 
As we have noted in the previous section, it is the time-averaged non-zero radial 

inflow at the stagnation point that initiates the eruptive breakdown. As is well known 
any rotation, be it steady or unsteady, of the boundary about the z-axis will result in 
a net radial outflow of fluid. If this overwhelms the induced flow, then there will be no 
breakdown of the solution. In this section we restrict our attention to two such 
situations. In the first the plane boundary is set into a uniform rotation, whilst in the 
second it performs an oscillatory motion. 
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(a) A, 4 1 

Thus we write 
(i) 4(7) = 1,7 > 0. For A, 4 1 we expand G(q,7) in a similar manner to F in (25). 

G(q, 7) = Go(q, 7) + A,{G?’(q) + G?)(q, 711 + O(A3 

a7 

(35) 

( 3 6 4  
aG so that Go satisfies G ; - A  = 0, 

with G0(0,7) = 1, GO(w,7) = 0 for 7 > 0; Go(q,O) = 0 for q > 0. (36b) 

The solution of (36) for the Stokes layer is simply Go = 1, ignoring transients, which 
indicates that the rotation of the boundary is impressed upon the Stokes layer. Now, 
it is clear that for a sufficiently large rotation rate, Q,, the radial inflow can always be 
overcome. One might ask, therefore, how small a rotation rate is required such that the 
outflow and inflow are comparable? In order for the centrifugal term, G2, in (8) to be 
comparable with the other terms on the left-hand side of that equation in the outer 
boundary layer, which we have already defined by (30), we require A, = O(A;). So, let 

A, = PA;. (37) 

With A, so defined, the equation for FF), (27), is unchanged with solution (28). The 
radial inflow still persists at the edge of the Stokes layer, and in the boundary layer 
beyond we again introduce the variables (30) together with 

(38) (3% 7) = g(% 3. 
And then from (8), (9), averaging again on the scale of 7, the ‘fast’ timescale, the 
equations satisfied by f and g are 

and we note that setting /3 = 0 in (39a) recovers (31). The boundary conditions for (39) 
are 

f (0 ,T)  = 0, f’(0,T) = -f, g(0,T) = 1, f’(w,T) = g(w,?) = 0, 7 > 0; (40) 

with f’(r,O+) = g(q,O+) = 0, 9 > 0. (41) 

Now, there will be a critical value of p, say /Ic, such that for ,5 < pc the developing 
solution of (39) will break down, in the manner that we have described in $3, whilst for 
/3 > pc the solution will asymptote to a steady state, with a net radial outflow. To find 
p,, we proceed as follows. ‘For ,8 < /Ic, since the solution fails at a finite value of 7, we 
may anticipate that the steady-state form of (39), that is with the 5-derivative terms 
ignored, will have no solution. By contrast for p > pc we expect them to yield the 
steady-state solution as anticipated above. Our procedure then is to find, for a 
sufficiently large value of p, the steady-state solution of (39) by a direct integration of 
the steady-state equations, and then to decrease ,L? by small amounts, SP say, using the 
previously converged solution as the initial estimate in the iterative solution at the new 
value of P. We find that for ,8 sufficiently small, the solution of the steady-state 
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equations fails to converge, which we interpret as non-existence of the solution, for 
p < p,. The estimate of p, itself can be refined by reducing the increment Sp. We find 
that 

p, = 1.149. (42) 
Before turning to our second case, we note from (37) that, since A, 6 1, the steady 

rotation rate that is required to inhibit the singular behaviour is very small indeed. 
(ii) 9(7) = cos (~+a) ,  T > 0. In this case the plane boundary performs torsional 

oscillations with the same frequency as the outer flow, but with phase difference a. 
We again expand F, G as in (25) and (35). The solution for F, in (26) is unchanged; 

Go satisfies (36) except that the condition at 7 = 0 is replaced by GO(0,7) = cos (~+a) ,  
so that, if we again ignore the initial transients, 

(43) 
In contrast to case (i), where the azimuthal component of velocity was independent of 
T at O(l), we see immediately from the interactions in (9) that the time-averaged 
azimuthal velocity will now be O(A,). Further, from (8) ,  we recognize that the 
azimuthal motion will affect the time-averaged radial motion at O(A,). This leads us to 
set 

The equation (27) for Fj5) now includes a term -pG:(’) on its right-hand side, which 
in turn modifies the solution which becomes 

F?)(T,I) = - 7 e-’’sin 7 - ieO(5 cos 7 + 3 sin 7) -$( 1 -p) e-’V -+(5 -p) 7 +$(21-/?). 

Go(7, 7) = e-T+i(Tfa-q) 

A, = PA,. (44) 

(45) 

(46) The equation for GI“) is GY’” = 4(Fi Go -F,  G;)‘”, 

with solution satisfying Gf)(O) = 0, and bounded at infinity, 

GV)(q) = 7 e-V{cos (7 -a) - sin (7 - a)} + 2 e-,q(sin a - cos a)  

+ 2 e-ycos (7 - a) - sin (7 -a)}. (47) 

We now have a situation in which a steady streaming persists at the edge of the Stokes 
layer in both the radial and azimuthal directions. For, as 7 + co, we have 

(48 a) 

(48 b) 
This leads us to consider the flow in the outer boundary layer for which we again 
introduce the variables defined by (30) and (38) withf,g again satisfying (39), but with 
the boundary conditions replaced by 

F‘ - COS T + +Al@- 5)  + O(A:), 
G - iA,(3 cos a - 7 sin a)  + O(A;). 

f ( 0 , ~ )  = 0, f ’ ( 0 , ~ )  = :@-5) ,  g(0,T) = ~(3cosa-7sina), (49 4 
(49 b) 

As in case (i) we argue that there will be some critical value p,, of p, such that for /3 > /3, 
steady-state solutions of (39) will exist, but that for /3 < p, the solution will break down 
at a finite time. The difference now, as we see from (49), is that p, = Pc(a). One 
point we note immediately is that, regardless of the value of a, if /? > 5 we have 
f ’ ( 0 , ~ )  > 0 and there will be no breakdown of the solution. To find p, we fix the value 
of a, with 0 Q 01 < n, and proceed exactly as in case (i). The results of this investigation 
are shown in figure 3, and we note that Pc(a) is periodic with period n. A feature of 

f’(co,T) = g(co,T) = 0. 
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0 x: 

FIGURE 3. The critical value of /3 = b,(a) for torsional oscillations of the boundary with 
#(7) = cos (7 +a), A, = /?A,. 

For values of /3 > /3, the flow becomes quasi-steady, whilst for /3 < /3, there is a breakdown of the 
solution at a finite time. 

figure 3 is that /3, = 5 when tan a = $, this corresponding to g(0, T) z 0. In turn, with 
/3 = 5 , f ' ( O ,  7) = 0 and in this region f = g = 0, so that no outer boundary layer is 
needed in this exceptional case. 

By comparing (37) and (44), it is worth noting that for the case of steady rotation 
a very much smaller value of A, is necessary to inhibit the development of a singularity 
in the solution than when the boundary performs torsional oscillations. 

(b) A, 9 1 
Unlike the previous case, when A, 4 1, where lower bounds for A,, the amplitude of 

the azimuthal motion of the boundary, were made, the situation is not so 
straightforward for A, B 1. Indeed a prohibitive amount of computing time would be 
required to obtain the same precise information. However it is still possible to 
demonstrate that a steady rotation, or azimuthal oscillatory motion, can suppress the 
eruptive, singular behaviour of the solution. We again consider each in turn. 

(i) $(7) E 1,7 > 0. For this case we choose a sufficiently rapid rotation rate for the 
boundary by writing A, = A;. An appropriate balance between the viscous and inertia 
terms in (8), (9) is then achieved by setting 7 = €6, where E = A;' so that, with a prime 
denoting differentiation with respect to Q we have 

i F  + 2FF" - F 2  + G2 = (I(€,), 

aG+2(FG-P'G) = O(E,), 

with F(o,7) = F ' ( O , 7 )  = 0, G(0,7) = 1, F(co,7) = (I(€), G(w,T)  = 0. (50c) 

The solution of these equations at leading order is that for a disk rotating steadily in 
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a fluid otherwise at rest, So, by rotating the plane boundary sufficiently rapidly the 
centrifuge effect will overwhelm the tendency of the fluid to drift radially inwards and 
erupt at the stagnation point. 

(ii) $(7) = C O S ? , ~  > 0. In contrast to (a) (ii), the boundary performs torsional 
oscillations with a much higher frequency. Thus, $ = cos 7 with 7 = A f 7 .  We choose 
large-amplitude oscillations such that A, = A!, and to effect a balance between the 
unsteady and viscous terms we set 9 = AL25 = 25. Equations (S), (9) and associated 
boundary conditions then become, with a prime denoting differentiation with respect 
to 5, 

O(e5), (51 a> 
aF' - + e(F'2 - 2FF" - G2) - iF"' = a? 

aG -+ 24F'G - FG') - ;G'' = 0, a? 
F(O,?) = F'(O,?) = 0, G(O,?) = COS?, F'(co,?) = O(E'), G(w,?) = 0. 

(51 c) 

Up to and including terms O(e), equations (51) are as studied by Rosenblat (1959) and 
Riley (1965) in an investigation of the flow induced by the torsional oscillations of a 
disk in a fluid otherwise at rest. In particular, if we write 

n=O n=O 

then we have 4 = G, = 0, and 
Go = e-ccos (7 - 0, (53 a> 

(53 b) 
From (53 b) we have Fi ++ as 5+ co which shows that a non-zero, time-averaged radial 
flow U(e)  persists at the edge of a layer of thickness O{e2(v/w)i} .  To accommodate this 
in an outer region Rilex (1965) writes [ = eg, F = F(0, G = G"(0, where it is shown 
that, at leading order, G = 0 and 

4 = - $( 1 - 25- e-'? - 3 ( 2  - 2/2) cos (2.7 + +TC) 

- 2 e-4'5 cos (2? - 2/ 25 + $T + 4 2  e-'< cos (27 - 25+ +IT)}. 

satisfies 

i p  + 2 F p  -p'2 = 0, 

together with 2(0) = 2'( 03) = 0, P(  03) = ;, (54 b) 

(544 

and a prime denotes differentiation with respect to [. The solution of (54) is discussed 
by Riley (1965). In particular, we note for our purpose, that the time-independent 
radial outflow induced by the torsional oscillations of the boundary is of relative order 
e-l when compared with the flow associated with the free-stream oscillations. And so, 
again, we have a situation in which a net radial outflow inhibits any tendency for the 
flow to erupt from the stagnation point. 

This brings us back to the problem of Amin & Riley (1990). Figure 1, as we have 
discussed in $1, shows the jet-like flow emerging from a sphere along the axis of 
oscillation in a quasi-steady manner, following an initial eruption of dye from the 
surface. It now seems clear that if the sphere were to perform some additional suitable 
torsional motion about the axis, there would be no net flow along the axis. Rather we 
might expect to see a net motion in a plane perpendicular to the axis in the form of a 
radial jet, as for example observed by Bowden & Lord (1963) in their experiments with 
a rotating sphere. 



498 N .  Riley 

REFERENCES 
AMIN, N. & RILEY, N. 1990 Streaming from a sphere due to a pulsating source. J.  Fluid Mech. 210, 

45w73. 
BANKS, W. H. H. & ZATURSKA, M. B. 1979 The collision of unsteady laminar boundary layers. 

J. Engng Maths 13, 193-212. 
BOWDEN, F. P. & LORD, R. G. 1963 The aerodynamic resistance to a sphere rotating at high speed. 

Proc. R. SOC. Lond. A 271, 143-153. 
BROWN, S. N. & SIMPSON, C. J. 1982 Collision phenomena in free-convective flow over a sphere. 

J.  Fluid Mech. 124, 123-137. 
HOWARTH, J. A. 1973 A note on the boundary-layer growth at an axisymmetric rear stagnation 

point. J.  Fluid Mech. 59, 769-773. 
RILEY, N. 1965 Oscillating viscous flows. Mathematika 12, 161-175. 
RILEY, N. & VASANTHA, R. 1989 An unsteady stagnation-point flow. Q. J. Mech. Appl. Maths 42, 

ROSENBLAT, S. 1959 Torsional oscillations of a plane in a viscous fluid. J .  Fluid Mech. 6, 206220. 
STUART, J. T. 1963 Unsteady boundary layers. In Laminar Boundary Layers (ed. L. Rosenhead), 

511-521. 

chap. 7. Clarendon. 




